Most images nowadays are represented using pixels. They are square, often relatively small and numerous, come in (2^8)^3 different colors and thereby do a good job being the fundamental building block of images. But one can imagine more coarse-grained and differently shaped pixels.
An interesting fact is, that in most monotype fonts two characters placed right next to each other (for example ‘$$’) occupy roughly a square area. So simple ASCII characters can indeed be used to approximately describe any ordinary image.
Asciify does exactly this; it takes in an image and some optional parameters and maps the pixels’ intensity onto a character set. Both the large and small default character sets are taken from a post by Paul Bourke.

Asciified kirby
Kirby grafitti

In conjunction with, I wrote, which asciifies a bunch of images and results in their html form; it also creates an index. All images asciified for this post can be viewed through this index.

Converting an image to its asciified form works best when there is a lot of contrast in the image. Because of this, some pre-processing of the image may be required for best results (all images shown where only cropped or rotated). The built-in color functionality also only knows of 8 colors, so bright and different colors look the best, as they interestingly differentiate from one another. The asciified image’s size also plays a role, the larger it is, the better the characters blend into one and appear to be one image.

Asciified cube
AoLong 3^3 cube

Asciify is operated on a command prompt; python img.png. To parse arguments, the built-in python module argparse is used. The images are opened and read using the Python Imaging Library module PIL, which needs to be installed for this program to work.
Optional arguments include --size N, where the maximum size can be specified, --invert and --smallcharset, which can sometimes increase the asciified image’s visual appeal and --html, which will output an html file to be viewed in a browser. To see the program’s full potential, simply run python --help.
Source code for both and can be downloaded, the first is also listed below.

The two examples above use the color mode, though certain images also work in default black and white mode, such as this spider I photographed.

Asciified spider

Then again, the colored text also has its charm, especially when the source image has bright colors and a lot of contrast.

Asciified boat

# Python 2.7 Code
# Jonathan Frech 3rd, 4th of March 2017
#      rewritten 12th of April 2017
#         edited 13th of April, 13th, 14th, 15th of July 2017

Continue reading

Curses Cam

Normally a shell lets you input via a text command and outputs via a text message. When using curses you can extend its capabilities and program for example games with limited graphics.
I wanted to go even further and built a python script that — using pygame’s camera module and curses — captures an image from an attached webcam (USB or built-in), transforms it and displays it on the shell.
Although both the resolution and the color depth are shrunk immensely, the resulting colored text on the shell often resembles the scene caught and has a nice visual effect.
There are two modes, camera and file viewer, which can be toggled by pressing F1. In camera mode you can see what the camera is seeing and snap a photo, which then will be saved to disk. In file viewer mode you can view the photos you took. The files will be saved in an out/ directory located in the current python file’s directory. Saved photos have the file extension .si (shell image).
Unfortunately pygame’s camera module does neither work on Mac OS X nor on Windows. Thus this program is only properly usable under Linux systems. You obviously also need a webcam or else you will not be able to take a picture.


  • F1 switches between camera and file viewer mode
  • Space saves the current photo as a .si file (only in camera mode)
  • Left or down arrow key decreases current file’s id (only in file viewer mode)
  • Right or up arrow key increases current file’s id (only in file viewer mode)

Blinky Graffiti Hand

# Python 2.7.7 Code
# Jonathan Frech 19th of August, 2016
#         edited 21st of August, 2016
#         edited 23rd of August, 2016
#         edited 26th of August, 2016

Continue reading