Mostly Misaligned Mirrors

Recently my stochastic professor introduced me to a problem he has been pondering for over two decades: on the two-dimensional integer lattice \mathbb{Z}^2 one shall flip a three-sided coin for each point and uniformly place one of three mirrors, \{\diagup,\,\cdot\,,\diagdown\}, where \,\cdot\, denotes not placing a mirror. After having populated the world, one picks their favorite integer tuple and points a beam of light in one of the four cardinal directions. With what probability does the light fall into a loop, never fully escaping?

Simulating a beam of light bouncing off mirrors.
A cycle which includes the origin.

With me almost surely not being able to solve this problem thru proof, I took the route of silicon-assisted problem analysis: simulation. However, even on very large lattice segments, the beam often either escapes or exists only for a very short time — as seen above.
Source code: mmm_visualize.py, mmm_simulate.py

An example of a rather intricate path which eventually escapes the chosen view:

Beam escaping on a 1000x1000 board.
The beam escapes on a 1000×1000 board.

After seeing the beams often escape my view frames, I decided to also simulate the problem without visualization — both to potentially get a performance increase as well as to lift the constraints of finite imagery. My results for running ten simulations are as follows:

$ python mmm_simulate.py 10
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[.] Visited 5110 mirrors before falling into a loop.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[.] Visited 4 mirrors before falling into a loop.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[X] Exceeded the maximum visited mirrors threshold of 1000000.
[X] Exceeded the maximum visited mirrors threshold of 1000000.

One can clearly see that whilst some paths are of minuscule lengths, others far exceed those, traversing over a million mirrors until getting stopped as to not fry my machine.

My professor’s conjecture states that any given mirror configuration almost surely — meaning with probability 1 — causes the beam of light to fall into a cycle.
In some sense it appears intuitively clear — escaping requires an infinite amount of mirrors to be placed correctly, however: could the beam also find a sneaky way around a lot (in the sense of being of non-vanishing measure) of configurations, squeezing elegantly and indefinitely around all obstacles? After running my simulations doubts in the former increase, leaving me cluelessly in the dark, waiting for a proper proof to be formalized.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.