# MMXVI

The idea is to only use the year’s digits — preferably in order — and mathematical symbols $(+, -, \cdot , \sqrt{}, \lfloor\rfloor, \lceil\rceil, \dots)$ to create an equation that evaluates to a specific day of the month.
The 0th of December, 2016 would, for example, be $2 \cdot 0 \cdot 1 \cdot 6$, $2^0 - 1^6$ or $\lfloor \frac{2}{0 + 16} \rfloor$.

$1 = 2 \cdot 0+1^6$
$2 = \sqrt{20-16}$
$3 = (2+0)^{-1} \cdot 6$
$4 = 2^{0+ \sqrt{\sqrt{16}}}$
$5 = 2 \cdot 0-1+6$
$6 = 2 \cdot 0 \cdot 1+6$
$7 = 2 \cdot 0+1+6$
$8 = 2+0+ \sqrt[1]{6}$
$9 = 2+0+1+6$
$10 = 2+0!+1+6$
$11 = -\lceil \sqrt{20} \rceil+16$
$12 = 2 \cdot (0!-1+6)$
$13 = -(2+0!)+16$
$14 = -(2+0)+16$
$15 = -(2 \cdot 0)!+16$
$16 = 2 \cdot 0+16$
$17 = 2^0+16$
$18 = 2+0+16$
$19 = 2+0!+16$
$20 = \lceil \sqrt{20} \rceil \cdot \sqrt{16}$
$21 = 20+ \lfloor \sqrt{\sqrt{\sqrt{16}}} \rfloor$
$22 = (2+0!)!+16$
$23 = (2+0!+1)!- \lfloor \sqrt{\sqrt{6}} \rfloor$
$24 = 20+ \sqrt{16}$
$25 = 20-1+6$
$26 = 20+1 \cdot 6$
$27 = 20+1+6$
$28 = 2+0-1+ \lceil \sqrt{6!} \rceil$
$29 = 20+ \lceil \sqrt{\lceil \sqrt{(1+6)!} \rceil} \rceil$
$30 = (2+0!+1)!+6$
$31 = \lceil \sqrt{\sqrt{\sqrt{\sqrt{20!}}}} \rceil +16$